Строение атома серы. Сера в продуктах питания Химический элемент сера в таблице менделеева

Сера (лат. Sulfur) S, химический элемент VI группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная С. состоит из четырёх стабильных изотопов: 32 S (95,02%), 33 S (0,75%), 34 S (4,21%), 36 S (0,02%). Получены также искусственные радиоактивные изотопы 31 S (T 1/2 = 2,4 сек ), 35 S (T 1/2 = 87,1 cym ), 37 S (T 1/2 = 5,04 мин ).

Историческая справка. С. в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. Она упоминается в Библии, поэмах Гомера и др. С. входила в состав "священных" курений при религиозных обрядах; считалось, что запах горящей С. отгоняет злых духов. С. давно стала необходимым компонентом зажигательных смесей для военных целей, например "греческого огня" (10 в. н. э.). Около 8 в. в Китае стали использовать С. в пиротехнических целях. Издавна С. и её соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой С. (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу С. установил А. Л. Лавуазье и включил её в список неметаллических простых тел (1789). В 1822 Э. Мичерлих обнаружил аллотропию С.

Распространение в природе. С. относится к весьма распространённым химическим элементам (кларк 4,7-10 -2); встречается в свободном состоянии (сера самородная ) и в виде соединений - сульфидов, полисульфидов, сульфатов (см. Сульфиды природные , Сульфаты природные , Сульфидные руды ). Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов С., образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов С. (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H 2 S и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации С. - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9-10 -2 %), подземных водах, в озёрах и солончаках. В глинах и сланцах С. в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот С.: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником С. в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO 2 и H 2 S. Хозяйственная деятельность человека ускорила миграцию С.; интенсифицировалось окисление сульфидов.

Физические и химические свойства. С. - твёрдое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая a-S лимонно-жёлтого цвета, плотность 2,07 г/см 3 , t пл 112,8 °C, устойчива ниже 95,6°C; моноклинная b-S медово-жёлтого цвета, плотность 1,96 г/см 3 , t пл 119,3 °C, устойчива между 95,6 °C и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S 8 с энергией связи S - S 225,7кдж/моль .

При плавлении С. превращается в подвижную жёлтую жидкость, которая выше 160 °C буреет, а около 190 °C становится вязкой тёмно-коричневой массой. Выше 190°C вязкость уменьшается, а при 300 °C С. вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °C кольца S 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °C уменьшает среднюю длину таких цепей.

Если расплавленную С., нагретую до 250-300 °C, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая С.). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в CS 2 модификация называется l-S, а нерастворимая - m-S. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую a-S. t kип С. 444,6 °C (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S 8 , существуют также S 6 , S 4 и S 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900°C остаются лишь S 2 , которые приблизительно при 1500°C заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров С. получается устойчивая ниже - 80°C пурпурная модификация, образованная молекулами S 2 .

С. - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и др.).

Конфигурация внешних электронов атома S 3s 2 3p 4 . В соединениях С. проявляет степени окисления -2, +4, +6.

С. химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N 2 , I 2 , Au, Pt и инертных газов. СO 2 на воздухе выше 300 °C образует окислы: SO 2 - сернистый ангидрид и SO 3 - серный ангидрид , из которых получают соответственно сернистую кислоту и серную кислоту , а также их соли сульфиты и сульфаты (см. также Тиокислоты и Тиосульфаты ). Уже на холоду S энергично соединяется с F 2 , при нагревании реагирует с Cl 2 (см. Серы фториды , Серы хлориды ); с бромом С. образует только S 2 Br 2 , иодиды серы неустойчивы. При нагревании (150 - 200 °C) наступает обратимая реакция с H 2 с получением сернистого водорода . С. образует также многосернистые водороды общей формулы H 2 S x , т. н. сульфаны. Известны многочисленные сераорганические соединения .

При нагревании С. взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800-900 °C пары С. реагируют с углеродом, образуясероуглерод CS 2 . Соединения С. с азотом (N 4 S 4 и N 2 S 5) могут быть получены только косвенным путём.

Получение. Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. см. Серные руды . Источник сернистого водорода для производства С. - коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H 2 S; наибольшее значение имеют следующие: 1) H 2 S извлекают из газов раствором моногидротиоарсената натрия:

Na 2 HAsS 2 + H 2 S = Na 2 HAsS 3 O + H 2 O.

Затем продувкой воздуха через раствор осаждают С. в свободном виде:

NaHAsS 3 O + 1/2 O 2 = Na 2 HAsS 2 O 2 + S.

2) H 2 S выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до SO 2 . После охлаждения H 2 S и образовавшиеся газы (SO 2 , N 2 , CO 2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:

2H 2 S + SO 2 = 3S + 2H 2 O.

В основе получения С. из SO 2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.

В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т ; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из H 2 S.

Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из H 2 S и SO 2 - газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы - черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. - серный цвет. Особо высокодисперсная С. носит название коллоидной.

Применение. С. применяется в первую очередь для получения серной кислоты: в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения чёрного (охотничьего) пороха; в производстве спичек.

Возможно это вас заинтересует:

  1. Загрузка... Барий (лат. Baryum), Ba, химический элемент II группы периодической системы Менделеева, атомный номер 56, атомная масса 137,34; серебристо-белый металл. Состоит из смеси 7 стабильных...

  2. Загрузка... Торий (лат. Thorium), Th, радиоактивный химический элемент, первый член семейства актиноидов, входящих в III группу периодической системы Менделеева; атомный номер 90, атомная масса 232,038;...

  3. Загрузка... Фосфор (лат. Phosphorus), Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30,97376, неметалл....

  4. Загрузка... Фтор (лат. Fluorum), F, химический элемент VII группы периодической системы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормальных условиях (0...

  5. Загрузка... Теллур (лат. Tellurium), Te, химический элемент VI группы главной подгруппы периодической системы Менделеева; атомный номер 52, атомная масса 127,60, относится к редким рассеянным элементам....

Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны "сернистые испарения", смертельное действие выделений горящей серы. Сера, вероятно, входила в состав "греческого огня", наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, легкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали "принципом горючести" и обязательной составной частью металлических руд. Пресвитер Теофил (XI в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее "принцип горючести" явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Происхождение лат. Sulfur неясно. Полагают, что это название заимствовано от греков. В литературе алхимического периода сера часто фигурирует под различными тайными названиями. У Руланда можно найти, например, названия Zarnec (объяснение "яйца с огнем"), Thucios (живая сера), Terra foetida, spiritus foetens, Scorith, Pater и др. Древнерусское название "сера" употребляется уже очень давно. Под ним подразумевались разные горючие и дурно пахнущие вещества, смолы, физиологические выделения (сера в ушах и пр.). По-видимому, это название происходит от санскритского сirа (светло-желтый). С ним связано слово "серый", т. е. неопределенного цвета, что, в частности, относится к смолам. Второе древнерусское название серы - жупел (сера горючая) - тоже содержит в себе понятие не только горючести, но и дурного запаха. Как объясняют филологи, нем. Schwefel имеет санскритский корень swep (спать, англо-саксонское sweblan - убивать), что, возможно, связано с ядовитыми свойствами сернистого газа.

Положение в периодической системе: сера находится в 3 периоде, VI группе, главной (А) подгруппе.

Атомный номер серы 16, следовательно, заряд атома серы равен + 16, число электронов 16. Три электронных уровня (равно периоду), на внешнем уровне 6 электронов (равно номеру группы для главных подгрупп).

Схема расположения электронов по уровням:
16 S)))
2 8 6

Ядро атома серы 32 S содержит 16 протонов (равно заряду ядра) и 16 нейтронов (атомная масса минус число протонов: 32 – 16 = 16).

Сера как простое вещество образует две аллотропные модификации: кристаллическая сера и пластическая.

Кристаллическая сера – твердое вещество желтого цвета, хрупкое, легкоплавкое (температура плавления 112° С), нерастворима в воде. Сера и многие руды, содержащие серу, не смачиваются водой. Поэтому порошок серы может плавать на поверхности, хотя сера тяжелее воды (плотность 2 г/см 3).

На этом основан метод обогащения руд под названием флотация: измельченная руда погружается в емкость с водой, через которую продувается воздух. Частички полезной руды подхватываются пузырьками воздуха и выносятся наверх, а пустая порода (например, песок) оседает на дно.

Пластическая сера темного цвета и способна растягиваться, как резина.

Это отличие в свойствах связано со строением молекул: кристаллическая сера состоит из кольцевых молекул, содержащих 8 атомов серы, а в пластической сере атомы соединены в длинные цепи. Пластическую серу можно получить, если нагреть серу до кипения и вылить в холодную воду.

В уравнениях для простоты записывают серу без указания числа атомов в молекуле: S.

Химические свойства:

  1. В реакциях с восстановителями: металлами, водородом, – сера проявляет себя как окислитель (степень окисления -2, валентность II). При нагревании порошков серы и железа образуется сульфид железа:
    Fe + S = FeS
    Со ртутью, натрием порошок серы реагирует при комнатной температуре:
    Hg + S = HgS
  2. При пропускании водорода через расплавленную серу образуется сероводород:
    H 2 + S = H 2 S
  3. В реакциях с сильными окислителями сера окисляется. Так, сера горит, образуется оксид серы (IV) – сернúстый газ:
    S + O 2 = SO 2

Оксид серы (IV) – кислотный оксид. Реагирует с водой с образованием сернúстой кислоты:

SO 2 + H 2 O = H 2 SO 3

Эта реакция происходит в атмосфере при сжигании каменного угля, который обычно содержит примеси серы. В результате выпадают кислотные дожди, поэтому очень важно подвергать очистке дымовые газы котельных.

В присутствии катализаторов оксид серы (IV) окисляется до оксида серы (VI):

2SO 2 + O 2 2SO 3 (реакция обратима)

Оксид серы (VI) реагирует с водой с образованием серной кислоты:

SO 3 + H 2 O = H 2 SO 4

SO 3 – бесцветная жидкость, кристаллизуется при 17° С, переходит в газообразное состояние при 45° С

Сера (лат. sulfur) s, химический элемент vi группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная С. состоит из четырёх стабильных изотопов: 32 s (95,02%), 33 s (0,75%), 34 s (4,21%), 36 s (0,02%). Получены также искусственные радиоактивные изотопы 31 s (t 1/2 = 2,4 сек ), 35 s (t 1/2 = 87,1 cym ), 37 s (t 1/2 = 5,04 мин ).

Историческая справка. С. в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. Она упоминается в Библии, поэмах Гомера и др. С. входила в состав «священных» курений при религиозных обрядах; считалось, что запах горящей С. отгоняет злых духов. С. давно стала необходимым компонентом зажигательных смесей для военных целей, например «греческого огня» (10 в. н. э.). Около 8 в. в Китае стали использовать С. в пиротехнических целях. Издавна С. и её соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой С. (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу С. установил А. Л. Лавуазье и включил её в список неметаллических простых тел (1789). В 1822 Э. Мичерлих обнаружил аллотропию С.

Распространение в природе. С. относится к весьма распространённым химическим элементам (кларк 4,7 · 10 -2); встречается в свободном состоянии (сера самородная ) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов С., образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов С. (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного h 2 s и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации С. - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9 · 10 -2 %), подземных водах, в озёрах и солончаках. В глинах и сланцах С. в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот С.: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником С. в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие so 2 и h 2 s. Хозяйственная деятельность человека ускорила миграцию С.; интенсифицировалось окисление сульфидов.

Физические и химические свойства. С. - твёрдое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая a -s лимонно-жёлтого цвета, плотность 2,07 г/см 3 , t пл 112,8 °С, устойчива ниже 95,6°С; моноклинная b -s медово-жёлтого цвета, плотность 1,96 г/см 3 , t пл 119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами s 8 с энергией связи s - s 225,7 кдж/моль .

При плавлении С. превращается в подвижную жёлтую жидкость, которая выше 160 °С буреет, а около 190 °С становится вязкой тёмно-коричневой массой. Выше 190°С вязкость уменьшается, а при 300 °С С. вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °С кольца s 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °С уменьшает среднюю длину таких цепей.

Если расплавленную С., нагретую до 250-300 °С, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая С.). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в cs 2 модификация называется l -s, а нерастворимая - m -s. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую a -s. t kип С. 444,6 °С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул s 8 , существуют также s 6 , s 4 и s 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900°С остаются лишь s 2 , которые приблизительно при 1500°С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров С. получается устойчивая ниже - 80°С пурпурная модификация, образованная молекулами s 2 .

С. - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и др.).

Конфигурация внешних электронов атома s 3 s 2 3 p 4 . В соединениях С. проявляет степени окисления -2, +4, +6.

С. химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением n 2 , i 2 , au, pt и инертных газов. С o 2 на воздухе выше 300 °С образует окислы: s o 2 - сернистый ангидрид и s o 3 - серный ангидрид , из которых получают соответственно сернистую кислоту и серную кислоту , а также их соли сульфиты и сульфаты . Уже на холоду s энергично соединяется с f 2 , при нагревании реагирует с c l 2; с бромом С. образует только s 2 b r 2 , иодиды серы неустойчивы. При нагревании (150 - 200 °С) наступает обратимая реакция с h 2 с получением сернистого водорода . С. образует также многосернистые водороды общей формулы h 2 s x , т. н. сульфаны. Известны многочисленные сераорганические соединения .

При нагревании С. взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800-900 °С пары С. реагируют с углеродом, образуя сероуглерод cs 2 . Соединения С. с азотом (n 4 s 4 и n 2 s 5) могут быть получены только косвенным путём.

Получение. Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. Источник сернистого водорода для производства С. - коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки h 2 s; наибольшее значение имеют следующие: 1) h 2 s извлекают из газов раствором моногидротиоарсената натрия:

na 2 hass 2 + h 2 s = na 2 hass 3 o + h 2 o .

Затем продувкой воздуха через раствор осаждают С. в свободном виде:

nahass 3 o + 1/2 o 2 = na 2 hass 2 o 2 + s.

2) h 2 s выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до so 2 . После охлаждения h 2 s и образовавшиеся газы (so 2 , n 2 , co 2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:

2h 2 s + so 2 = 3s + 2h 2 o.

В основе получения С. из so 2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.

В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т ; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из h 2 s.

Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из h 2 s и s o 2 - газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы - черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. - серный цвет. Особо высокодисперсная С. носит название коллоидной.

Применение . С. применяется в первую очередь для получения серной кислоты: в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения чёрного (охотничьего) пороха; в производстве спичек.

И. К. Малина.

Сера в организме. В виде органических и неорганических соединений С. постоянно присутствует во всех живых организмах и является важным биогенным элементом . Её среднее содержание в расчёте на сухое вещество составляет: в морских растениях около 1,2%, наземных - 0,3%, в морских животных 0,5-2%, наземных - 0,5%. Биологическая роль С. определяется тем, что она входит в состав широко распространённых в живой природе соединений: аминокислот (метионин , цистеин ), и следовательно белков и пептидов; коферментов (кофермент А, липоевая кислота ), витаминов (биотин , тиамин ), глутатиона и другие Сульфгидрильные группы (- sh) остатков цистеина играют важную роль в структуре и каталитическая активности многих ферментов. Образуя дисульфидные связи (- s - s -) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков. У животных С. обнаружена также в виде органических сульфатов и сульфокислот - хондроитинсерной кислоты (в хрящах и костях), таурохолиевой кислоты (в жёлчи), гепарина , таурина . В некоторых железосодержащих белках (например, ферродоксинах) С. обнаружена в форме кислотолабильного сульфида. С. способна к образованию богатых энергией связей в макроэргических соединениях .

Неорганические соединения С. в организмах высших животных обнаружены в небольших количествах, главным образом в виде сульфатов (в крови, моче), а также роданидов (в слюне, желудочном соке, молоке, моче). Морские организмы богаче неорганическими соединениями С., чем пресноводные и наземные. Для растений и многих микроорганизмов сульфат (so 4 2-) наряду с фосфатом и нитратом служит важнейшим источником минерального питания. Перед включением в органические соединения С. претерпевает изменения в валентности и превращается затем в органическую форму в своём наименее окисленном состоянии; т. о. С. широко участвует в окислительно-восстановительных реакциях в клетках. В клетках сульфаты, взаимодействуя с аденозинтрифосфатом (АТФ), превращаются в активную форму - аденилилсульфат:

АТФ + сульфат ---сульфурилаза ---> аденилсульфат + пирофосфат

Катализирующий эту реакцию фермент - сульфурилаза (АТФ: сульфат - адснилилтрансфераза) широко распространён в природе. В такой активированной форме сульфонильная группа подвергается дальнейшим превращениям - переносится на др. акцептор или восстанавливается.

Животные усваивают С. в составе органических соединений. Автотрофные организмы получают всю С., содержащуюся в клетках, из неорганических соединений, главным образом в виде сульфатов. Способностью к автотрофному усвоению С. обладают высшие растения, многие водоросли, грибы и бактерии. (Из культуры бактерий был выделен специальный белок, осуществляющий перенос сульфата через клеточную мембрану из среды в клетку.) Большую роль в круговороте С. в природе играют микроорганизмы - десульфурирующие бактерии и серобактерии . Многие разрабатываемые месторождения С. - биогенного происхождения. С. входит в состав антибиотиков (пенициллины , цефалоспорины ); её соединения используются в качестве радиозащитных средств , средств защиты растений.

Л. И. Беленький.

Лит.: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Природная сера, под ред. М. А. Менковского, М., 1972; Некрасов Б. В., Основы обшей химии, 3 изд., т. 1, М., 1973; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Янг Л., Моу Д ж., Метаболизм соединений серы, пер. с англ., М., 1961; Горизонты биохимии, пер. с англ., М., 1964; Биохимия растений, пер. с англ., М., 1968, гл. 19; Торчинский Ю. М., Сульфгидрильные и дисульфидные группы белков, М., 1971; Дегли С., Никольсон Д., Метаболические пути, пер. с англ., М., 1973.

cкачать реферат

Сера - S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс».

Природная сера состоит из четырех стабильных нуклидов: 32S (содержание 95,084% по массе), 33S (0,74 %), 34S (4,16%) и 36S (0,016 %).

Радиус атома серы 0,104 нм. Радиусы ионов: иона S2- 0,170 нм (координационное число 6), иона S4+ 0,051 нм (координационное число 6) и иона S6+ 0,026 нм (координационное число 4). Энергии последовательной ионизации нейтрального атома серы от S0 до S6+ равны, соответственно, 10,36, 23,35, 34,8, 47,3, 72,5 и 88,0 эВ.

Сера расположена в VIA группе периодической системы Д. И. Менделеева, в 3-м периоде, и принадлежит к числу халькогенов. Конфигурация внешнего электронного слоя 3s23p4. Наиболее характерны степени окисления в соединениях -2, +4, +6 (валентности соответственно II, IV и VI). Значение электроотрицательности серы по Полингу 2,6.

Сера относится к числу неметаллов.

Физические свойства серы

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера -- хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде, скипидаре. Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °С; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °С полимерные звенья начинают рушиться. Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.